Health, Medicine

Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth

S09445013.gif

Publication date: Available online 30 May 2017
Source:Microbiological Research
Author(s): Bhagya Iyer, Mahendrapal Singh Rajput, Shalini Rajkumar
Diverse nitrogen fixing bacteria harbouring chick pea rhizosphere and root nodules were tested for multiple plant growth promoting traits like tricalcium phosphate (TCP) and rock phosphate (RP) solubilization, production of ammonia, indole 3-acetic acid, chitinase, phytase and alkaline phosphatase. Isolates belonged to diverse genus like Enterobacter, Acinetobacter, Erwinia, Pseudomonas, Rhizobium, Sinorhizobium, Ensifer, Klebsiella, etc. Most isolates solubilized TCP and RP along with the lowering of media pH, indicating acidification to be the chief mechanism behind this solubilization. However, lowering of media pH and P release decreased by 32-100% when media was supplemented with succinate, a major component of plant root exudates indicating succinate mediated repression of P solubilization. Maximum TCP and RP solubilization with P release of 850μg/mL and 2088μg/mL was obtained with lowering of media pH up to 2.8 and 3.3 for isolate E43 and PSB1 respectively. This pH drop changed to 4.4 and 4.8 with 80% and 87% decrease in P solubilization in the presence of succinate. Maximum 246μg/mL indole 3-acetic acid production in Lh3, 44.8U/mL chitinase activity in MB3, 11.3U/mL phytase activity in I91 and 9.4U/mL alkaline phosphatase activity in SM1 were also obtained. Most isolates showed multiple PGP traits which resulted in significant plant growth promotion of chick pea plants. Present study shows repression of P solubilization by succinate for various bacterial groups which might be one of the reasons why phosphate solubilizing bacteria which perform well in vitro often fail in vivo. Studying this repression mechanism might be critical in understanding the in vivo efficacy.

http://ift.tt/2roQ88q

http://ift.tt/2rUj9tm

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s